Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells.
نویسندگان
چکیده
Tissue morphogenesis requires stereotyped cell shape changes, such as apical cell constriction in the mesoderm and cell intercalation in the ventrolateral ectoderm of Drosophila. Both processes require force generation by an actomyosin network. The subcellular localization of Myosin-II (Myo-II) dictates these different morphogenetic processes. In the intercalating ectoderm Myo-II is mostly cortical, but in the mesoderm Myo-II is concentrated in a medial meshwork. We report that apical constriction is repressed by JAK/STAT signalling in the lateral ectoderm independently of Twist. Inactivation of the JAK/STAT pathway causes germband extension defects because of apical constriction ventrolaterally. This is associated with ectopic recruitment of Myo-II in a medial web, which causes apical cell constriction as shown by laser nanosurgery. Reducing Myo-II levels rescues the JAK/STAT mutant phenotype, whereas overexpression of the Myo-II heavy chain (also known as Zipper), or constitutive activation of its regulatory light chain, does not cause medial accumulation of Myo-II nor apical constriction. Thus, JAK/STAT controls Myo-II localization by additional mechanisms. We show that regulation of actin polymerization by Wasp, but not by Dia, is important in this process. Constitutive activation of Wasp, a branched actin regulator, causes apical cell constriction and promotes medial 'web' formation. Wasp is inactivated at the cell cortex in the germband by JAK/STAT signalling. Lastly, wasp mutants rescue the normal cortical enrichment of Myo-II and inhibit apical constriction in JAK/STAT mutants, indicating that Wasp is an effector of JAK/STAT signalling in the germband. We discuss possible models for the role of Wasp activity in the regulation of Myo-II distribution.
منابع مشابه
Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network.
The actin-binding protein Shroom is essential for neural tube morphogenesis in multiple vertebrate organisms, indicating its function is evolutionarily conserved. Shroom facilitates neurulation by regulating the morphology of neurepithelial cells. Shroom localizes to the apical tip of adherens junctions of neural ectoderm cells in vivo and to the apical junctional complex (AJC) in MDCK cells. I...
متن کاملA Dynamic Microtubule Cytoskeleton Directs Medial Actomyosin Function during Tube Formation
The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rea...
متن کاملBazooka inhibits aPKC to limit antagonism of actomyosin networks during amnioserosa apical constriction.
Cell shape changes drive tissue morphogenesis during animal development. An important example is the apical cell constriction that initiates tissue internalisation. Apical constriction can occur through a phase of cyclic assembly and disassembly of apicomedial actomyosin networks, followed by stabilisation of these networks. Delayed negative-feedback mechanisms typically underlie cyclic behavio...
متن کاملThe PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila.
Apical constriction is a major mechanism underlying tissue internalization during development. This cell constriction typically requires actomyosin contractility. Thus, understanding apical constriction requires characterization of the mechanics and regulation of actomyosin assemblies. We have analyzed the relationship between myosin and the polarity regulators Par-6, aPKC and Bazooka (Par-3) (...
متن کاملAsymmetric localisation of cytokine mRNA is essential for JAK/STAT activation during cell invasiveness.
The transition from immotile epithelial cells to migrating cells occurs in all organisms during normal embryonic development, as well as during tumour metastasis. During Drosophila oogenesis, border cells (BCs) are recruited and delaminate from the follicular epithelium. This process is triggered by the polar cells (PCs), which secrete the cytokine Unpaired (Upd) and activate the JAK/STAT pathw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 136 24 شماره
صفحات -
تاریخ انتشار 2009